The publications of the members of Eng4Life.
2019
Barba, Anna Angela; Bochicchio, Sabrina; Dalmoro, Annalisa; Lamberti, Gaetano
Lipid Delivery Systems for Nucleic-Acid-Based-Drugs: From Production to Clinical Applications Journal Article
In: Pharmaceutics, vol. 11, no. 360, 2019.
Abstract | Links | BibTeX | Tags: clinical trials, liposomes, Micro and Nano Vectors, NABDs, siRNA
@article{Barba2019b,
title = {Lipid Delivery Systems for Nucleic-Acid-Based-Drugs: From Production to Clinical Applications},
author = {Anna Angela Barba and Sabrina Bochicchio and Annalisa Dalmoro and Gaetano Lamberti},
url = {https://www.mdpi.com/1999-4923/11/8/360},
doi = {10.3390/pharmaceutics11080360},
year = {2019},
date = {2019-07-24},
journal = {Pharmaceutics},
volume = {11},
number = {360},
abstract = {In the last years the rapid development of Nucleic Acid Based Drugs (NABDs) to be used in gene therapy has had a great impact in the medical field, holding enormous promise, becoming “the latest generation medicine” with the first ever siRNA-lipid based formulation approved by the United States Food and Drug Administration (FDA) for human use, and currently on the market under the trade name Onpattro™. The growth of such powerful biologic therapeutics has gone hand in hand with the progress in delivery systems technology, which is absolutely required to improve their safety and effectiveness. Lipid carrier systems, particularly liposomes, have been proven to be the most suitable vehicles meeting NABDs requirements in the medical healthcare framework, limiting their toxicity, and ensuring their delivery and expression into the target tissues. In this review, after a description of the several kinds of liposomes structures and formulations used for in vitro or in vivo NABDs delivery, the broad range of siRNA-liposomes production techniques are discussed in the light of the latest technological progresses. Then, the current status of siRNA-lipid delivery systems in clinical trials is addressed, offering an updated overview on the clinical goals and the next challenges of this new class of therapeutics which will soon replace traditional drugs},
keywords = {clinical trials, liposomes, Micro and Nano Vectors, NABDs, siRNA},
pubstate = {published},
tppubtype = {article}
}
Dalmoro, Annalisa; Bochicchio, Sabrina; Lamberti, Gaetano; Bertoncin, Paolo; Janssens, Barbara; Barba, Anna Angela
Micronutrients encapsulation in enhanced nanoliposomal carriers by a novel preparative technology Journal Article
In: RSC Advances, vol. 9, pp. 19800-19812, 2019.
Abstract | Links | BibTeX | Tags: Drug Delivery Systems, Liposome bioadhesive, Liposomi bioadesivi, Micro and Nano Vectors
@article{Dalmoro2019,
title = {Micronutrients encapsulation in enhanced nanoliposomal carriers by a novel preparative technology },
author = {Annalisa Dalmoro and Sabrina Bochicchio and Gaetano Lamberti and Paolo Bertoncin and Barbara Janssens and Anna Angela Barba},
url = {https://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra03022k},
doi = {10.1039/C9RA03022K},
year = {2019},
date = {2019-06-25},
journal = {RSC Advances},
volume = {9},
pages = {19800-19812},
abstract = {Micronutrients administration by fortification of staple and complementary foods is a followed strategy to fight malnutrition and micronutrient deficiencies and related pathologies. There is a great industrial interest in preparation of formulations for joint administration of vitamin D3 and vitamin K2 for providing bone support, promoting heart health and helping boost immunity. To respond to this topic, in this work, uncoated nanoliposomes loaded with vitamin D3 and K2 were successfully prepared, by using a novel, high-yield and semi continuous technique based on simil-microfluidic principles. By the same technique, to promote and to enhance mucoadhesiveness and stability of the produced liposomal structures, chitosan was tested as covering material. By this way polymer–lipid hybrid nanoparticles, encapsulating vitamin D3 and vitamin K2, with improved features in terms of stability, loading and mucoadhesiveness were produced for potential nutraceutical and pharmaceutical applications.},
keywords = {Drug Delivery Systems, Liposome bioadhesive, Liposomi bioadesivi, Micro and Nano Vectors},
pubstate = {published},
tppubtype = {article}
}
2018
Dalmoro, Annalisa; Bochicchio, Sabrina; Nasibullin, Shamil F.; Bertoncin, Paolo; Lamberti, Gaetano; Barba, Anna Angela; Moustafine, Rouslan I.
Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems Journal Article
In: European Journal of Pharmaceutical Sciences, vol. 121, pp. 16-28, 2018.
Abstract | Links | BibTeX | Tags: Liposome bioadhesive, Liposomi bioadesivi, Micro and Nano Vectors
@article{Dalmoro2018,
title = {Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems},
author = {Annalisa Dalmoro and Sabrina Bochicchio and Shamil F. Nasibullin and Paolo Bertoncin and Gaetano Lamberti and Anna Angela Barba and Rouslan I. Moustafine},
url = {https://www.sciencedirect.com/science/article/pii/S0928098718302331},
doi = {10.1016/j.ejps.2018.05.014},
year = {2018},
date = {2018-08-30},
journal = {European Journal of Pharmaceutical Sciences},
volume = {121},
pages = {16-28},
abstract = {Non-steroidal anti-inflammatory drugs (NSAIDs), i.e. indomethacin used for rheumatoid arthritis and non-rheumatoid inflammatory diseases, are known for their injurious actions on the gastrointestinal (GI) tract. Mucosal damage can be avoided by using nanoscale systems composed by a combination of liposomes and biodegradable natural polymer, i.e. chitosan, for enhancing drug activity.
Aim of this study was to prepare chitosan-lipid hybrid delivery systems for indomethacin dosage through a novel continuous method based on microfluidic principles. The drop-wise conventional method was also applied in order to investigate the effect of the two polymeric coverage processes on the nanostructures features and their interactions with indomethacin. Thermal-physical properties, mucoadhesiveness, drug entrapment efficiency, in vitro release behavior in simulated GI fluids and stability in stocking conditions were assayed and compared, respectively, for the uncoated and chitosan-coated nanoliposomes prepared by the two introduced methods.
The prepared chitosan-lipid hybrid structures, with nanometric size, have shown high indomethacin loading (about 10%) and drug encapsulation efficiency up to 99%. TEM investigation has highlighted that the developed novel simil-microfluidic method is able to put a polymeric layer, surrounding indomethacin loaded nanoliposomes, thicker and smoother than that achievable by the drop-wise method, improving their storage stability. Finally, double pH tests have confirmed that the chitosan-lipid hybrid nanostructures have a gastro retentive behavior in simulated gastric and intestinal fluids thus can be used as delivery systems for the oral-controlled release of indomethacin.
Based on the present results, the simil-microfluidic method, working with large volumes, in a rapid manner, without the use of drastic conditions and with a precise control over the covering process, seems to be the most promising method for the production of suitable indomethacin delivery system, with a great potential in industrial manufacturing.},
keywords = {Liposome bioadhesive, Liposomi bioadesivi, Micro and Nano Vectors},
pubstate = {published},
tppubtype = {article}
}
Aim of this study was to prepare chitosan-lipid hybrid delivery systems for indomethacin dosage through a novel continuous method based on microfluidic principles. The drop-wise conventional method was also applied in order to investigate the effect of the two polymeric coverage processes on the nanostructures features and their interactions with indomethacin. Thermal-physical properties, mucoadhesiveness, drug entrapment efficiency, in vitro release behavior in simulated GI fluids and stability in stocking conditions were assayed and compared, respectively, for the uncoated and chitosan-coated nanoliposomes prepared by the two introduced methods.
The prepared chitosan-lipid hybrid structures, with nanometric size, have shown high indomethacin loading (about 10%) and drug encapsulation efficiency up to 99%. TEM investigation has highlighted that the developed novel simil-microfluidic method is able to put a polymeric layer, surrounding indomethacin loaded nanoliposomes, thicker and smoother than that achievable by the drop-wise method, improving their storage stability. Finally, double pH tests have confirmed that the chitosan-lipid hybrid nanostructures have a gastro retentive behavior in simulated gastric and intestinal fluids thus can be used as delivery systems for the oral-controlled release of indomethacin.
Based on the present results, the simil-microfluidic method, working with large volumes, in a rapid manner, without the use of drastic conditions and with a precise control over the covering process, seems to be the most promising method for the production of suitable indomethacin delivery system, with a great potential in industrial manufacturing.